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Abstract 13 

We introduce the Time Velocity Gravity Model (TVGM), a scalar-field framework in which 14 

gravity arises from spatial gradients in the local velocity of time, rather than from force or 15 

spacetime curvature. The central postulate is physically motivated: in flat space, time flows at 16 

a constant velocity c, and mass induces asymmetric reductions in this flow. From this single 17 

principle, we derive gravitational acceleration, orbital dynamics, and planetary rotation 18 

without relying on classical forces or geodesic motion. TVGM not only recovers Newtonian 19 

results in the appropriate limit but also offers unified explanations for gravitational 20 

phenomena that remain unresolved in existing models—including Venus’s retrograde 21 

rotation, Mercury’s spin–orbit resonance, tidal locking behavior, flat galaxy rotation curves, 22 
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and spacecraft flyby anomalies. These predictions are achieved using a single calibrated 23 

parameter, without invoking dark matter, atmospheric torque, or initial spin.  24 

 25 

Introduction 26 

  27 

Gravity governs the structure of the universe, shaping the formation and motion of 28 

celestial bodies across all scales. The fundamental motions it drives—free fall, 29 

planetary rotation, and orbital motion—underpin everything from the behavior of 30 

planets to the architecture of galaxies. While Newtonian mechanics and general 31 

relativity offer powerful predictive frameworks [1–3], several foundational 32 

questions remain unanswered: Why do planets rotate? What stabilizes orbital paths 33 

over astronomical timescales? And why do certain gravitational anomalies persist 34 

despite increasingly refined theoretical models? These questions suggest the need 35 

to rethink gravity not only in form, but in foundation. 36 

In this paper, we introduce the Time Velocity Gravity Model (TVGM), a scalar 37 

field theory built on the physically motivated assumption that, in flat space, time 38 

 flows at a constant velocity vₜ= c—a condition supported by relativistic behavior 39 

and gravitational time dilation [3,4]. In TVGM, mass induces gradients in this time 40 

flow, and these gradients give rise to motion. Free fall, rotation, and orbital paths 41 

emerge as natural consequences of temporal asymmetry. In contrast to force-based 42 

or geometric interpretations of gravity, TVGM frames motion as the result of drift 43 

within a gradient of time’s propagation speed. Thus, unlike conventional treatments 44 



where time is considered a passive coordinate, TVGM regards time as an active 45 

physical entity—a field with velocity, whose spatial gradients directly generate 46 

motion. 47 

 This interpretation allows gravitational dynamics to be derived from a single 48 

principle: objects move because time flows unevenly around mass. In the sections 49 

that follow, we develop this principle into a quantitative framework and show that 50 

it can reproduce and explain a range of observed gravitational phenomena that 51 

remain unexplained by Newtonian or relativistic models. 52 

  53 

Among these are the retrograde rotation and solar resonance of Venus, 54 

the precession of Mercury [5], the anomalous velocity shifts in planetary 55 

flybys [6,7], and the flat rotation curves of spiral galaxies [8,9]—all traditionally 56 

regarded as gravitational anomalies requiring either higher-order corrections, exotic 57 

matter, or unexplained forces. In TVGM, they emerge from the same underlying 58 

scalar field. 59 

  60 

We present the theoretical foundations of this model, derive its physical predictions 61 

from first principles, and demonstrate its consistency with existing astronomical 62 

observations. 63 

  64 

 Time Velocity as a Physical Field 65 



 66 

In classical mechanics, time is treated as a passive, universal parameter. In general relativity, 67 

it is part of a curved spacetime manifold shaped by mass. Yet in neither framework is time 68 

assigned a local velocity or treated as a dynamic field. 69 

TVGM departs from this view. In this model, time is not merely a coordinate or background, 70 

but a structured physical field. The postulate that time flows at velocity c in flat space is 71 

supported by a range of well-established relativistic phenomena, both theoretical and 72 

experimental, as outlined in the next section. These foundations lend physical legitimacy to 73 

treating time flow velocity as a measurable and dynamic field quantity [10–12] 74 

Why Time Flows at vₜ= c 75 

1. Time Dilation in Special Relativity 76 

 77 

As a particle’s speed approaches the speed of light, the proper time it experiences 78 

approaches zero: 79 

  80 

Δτ = Δt √(1 – v²/c²) 81 

 As v → c, Δτ → 0. Massless particles such as photons, which always travel at c, 82 

experience no proper time. This suggests that such particles move in lockstep with 83 

the propagation of time itself — they do not “lag behind” time’s flow, but match it. 84 

TVGM interprets this to mean that  vₜ= c is the intrinsic velocity of time in vacuum, 85 

and massless particles are co-moving with it. 86 



  87 

2. Gravitational Time Dilation in General Relativity 88 

In general relativity, the presence of mass reduces the local rate of time flow. The 89 

gravitational time dilation formula: 90 

dτ = dt √(1 – 2GM / rc²) 91 

shows that near massive objects, proper time slows down, where r is the radial distance from 92 

the mass. As r → ∞, the expression tends to dτ → dt, representing unperturbed, maximal time 93 

flow in flat space. This is fully consistent with the idea that vₜ reaches its maximum value 94 

(vₜ= c) when mass is absent [13]. This gravitational time dilation is confirmed experimentally 95 

through high-precision atomic clock measurements, including Hafele–Keating’s airborne tests 96 

and satellite-based systems like GPS. These show that clocks farther from mass tick faster—97 

consistent with vₜ approaching c in flat space [11,15]. 98 

 99 

  100 

3. Minkowski Spacetime Interval 101 

  102 

The Minkowski interval defines causal structure in special relativity: 103 

  104 

ds² = c²dt² – dx² – dy² – dz² 105 

  106 



For light-like (null) intervals — paths followed by massless particles — ds² = 0, 107 

which leads to: 108 

  109 

c²dt² = dx² + dy² + dz² 110 

  111 

This identity implies that massless particles travel through space at the same 112 

rate that time propagates — again consistent with vₜ = c. Rather than 113 

interpreting this as a geometrical coincidence, TVGM treats it as a physical 114 

equivalence: in flat space, time flows at c, and massless particles co-move with 115 

this flow. 116 

  117 

 118 

 Beyond its theoretical and experimental consistency, this assumption serves as the 119 

starting point for a unified explanation of several unresolved gravitational 120 

behaviors, as explored in the sections that follow. 121 

 122 

  123 

 Acceleration from Time Flow Gradient 124 

 125 

 Fundamental Principle of TVGM 126 

 127 



TVGM postulates that the presence of mass slows the flow of time, creating spatial gradients 128 

in the local time velocity. This leads to the primary equation of the model: 129 

 130 

𝑎 = −∇𝑉ₜ 131 

 132 

 133 

Where: 134 

• a is the local acceleration of a test particle 135 

•  𝑉ₜ is the scalar field representing the local velocity of time 136 

• −∇𝑉ₜ is the spatial gradient of 𝑉ₜ 137 

 138 

  139 

Free Fall from Time Flow Gradient 140 

Free Fall from Time Flow Gradient 141 

 142 

According to the fundamental principle of TVGM: 143 

𝑎 = −∇𝑉ₜ 144 

 145 

 146 



In general relativity, the time dilation factor for a stationary observer in Schwarzschild 147 

spacetime is: 148 

𝐕ₜ(𝐫) = 𝐂 × √(1 − 2𝐆𝐌⁄(𝐫𝐂²)) 149 

 150 

 151 

In the weak-field limit, this expression expands to: 152 

𝐕ₜ(𝐫) = 𝐂 × (1 − 𝐆𝐌⁄(𝐫𝐂²)) 153 

 154 

 155 

TVGM adopts this first-order expansion as the baseline profile of the scalar time velocity 156 

field, modeling the smooth decrease of time flow near mass. This preserves analytical 157 

simplicity while capturing the essential spatial asymmetry that drives motion in TVGM. 158 

𝐕ₜ(𝐫) = 𝐂 × (1 − 𝐆𝐌⁄(𝐫𝐂²)) 159 

 160 

 161 

 162 

This profile satisfies: 163 

• In flat space (M = 0 or r → ∞), 𝐕ₜ = 𝐂 164 

 165 



• Near mass, 𝐕ₜ decreases smoothly and continuously 166 

 167 

Taking the radial gradient of  𝐕ₜ(𝐫) yields: 168 

 169 

 𝑎 = −∇Vₜ = 𝑑⁄𝑑𝑟 [𝐶 × (1 − 𝐺𝑀⁄(𝑟𝐶²))] 𝐫  = −(𝐺𝑀⁄𝑟²) 𝐫  170 

 171 

 172 

This reproduces the classical Newtonian result — not from force or curvature, but from the 173 

gradient of time flow. 174 

 175 

This equivalence confirms that TVGM is dynamically consistent with Newtonian gravity and 176 

with relativistic variational approaches, where a = –∇Φ emerges from geodesics, Lagrangian, 177 

or Hamiltonian formalisms [13,14]. In TVGM,  ∇Vₜ structurally replaces ∇Φ, linking 178 

gravitational dynamics to temporal asymmetry.   179 

 180 

In this view, matter attracts by distorting time flow: objects accelerate not because of a force, 181 

but because they drift toward slower time. 182 

TVGM recovers Newtonian predictions in the weak-field limit, demonstrating that   𝑎 = −∇Vₜ 183 

is both predictive and derivable from first principles. This compatibility extends beyond 184 



classical mechanics: Appendix A shows that the same equation arises naturally from 185 

Lagrangian, Hamiltonian, and geodesic formulations. 186 

 187 

 188 

 189 

Rotational Motion from Asymmetric Time Flow 190 

 191 

In classical mechanics, planetary rotation arises from primordial spin or external torques. In 192 

the Time Velocity Gravity Model (TVGM), by contrast, rotation emerges naturally from 193 

asymmetries in the time velocity field surrounding a gravitating body. 194 

Whereas free fall results from radial gradients in time velocity Vₜ, rotational motion is driven 195 

by angular (latitudinal) asymmetries. These occur when the time flow distribution is not 196 

perfectly spherically symmetric—as near massive bodies or in inclined orbital configurations. 197 

This angular asymmetry leads to differential time drift across colatitudes: the equator, 198 

experiencing a greater deviation in local Vₜ, drifts through time faster than the poles. This 199 

creates a non-radial acceleration profile—strongest at the equator and vanishing at the poles—200 

that initiates torque-free spin. 201 

According to the core equation of TVGM (𝑎 = −∇Vₜ), the angular (colatitudinal) component 202 

of acceleration is: 203 

𝐚_θ = −(1⁄𝐫) × ∂𝐕ₜ⁄∂θ 204 



 205 

To model the angular variation of time flow, we assume Vₜ (θ) follows a cosine asymmetry 206 

due to solar geometry: 207 

𝐕ₜ(θ) = 𝐕₀(t) + ∆𝐕ₜ × cosθ 208 

 209 

Differentiating gives: 210 

∂𝐕ₜ⁄∂θ = −∆𝐕ₜ × sinθ 211 

The amplitude  ∆𝐕ₜ arises from the spatial gradient of  𝐕ₜ across a body of radius R, so we 212 

estimate: 213 

∆𝐕ₜ ≈ (𝐆𝐌𝐑²)⁄(𝐫³𝐂) 214 

 215 

Substituting into the angular acceleration equation: 216 

𝐚_θ = −(1⁄𝐫) × ∂𝐕ₜ⁄∂θ = (𝐆𝐌 × 𝐑² × sinθ)⁄(𝐫³𝐂) 217 

 218 

 219 

 220 

Rewriting using angular projection symmetry, this yields the expression: 221 

𝐚_θ(θ) = 𝐚₀ × sinθ, 222 

where 223 

𝐚₀ = (𝐆𝐌 × 𝐑²)⁄(𝐫³𝐂) 224 



This equation predicts angular acceleration peaking at the equator (cos θ = 1) and vanishing at 225 

the poles (cos θ = 0). It captures rotation without invoking torque or initial spin—arising 226 

entirely from field asymmetry. 227 

Second-order effects, such as long-term resonance stabilization, are addressed by introducing 228 

a correction factor α, derived in the section Orbital Motion from Radial Time Flow. Alpha 229 

accounts for subtle second-order deviations in the time velocity gradient and has been 230 

calibrated using Mercury’s perihelion precession. Importantly, the same value of α is used 231 

unchanged across all TVGM predictions—including angular acceleration, orbital corrections, 232 

and resonance effects—reinforcing the model’s consistency and predictive power.  233 

  234 

 235 

Interpretation and Predictions 236 

In TVGM, rotation is not an initial condition. Rotation rate and direction depend on: 237 

• Radius and mass distribution (R) 238 

• Distance to nearby massive bodies (r) 239 

• Orbital inclination (via angular projection of vₜ asymmetry) 240 

 241 

Unlike classical models [18,19], which require pre-existing spin or tidal torques, TVGM 242 

predicts rotation even for initially static, spherically symmetric bodies in asymmetric fields. 243 

 244 



 245 

Case Study: Venus Retrograde Rotation 246 

 247 

Venus rotates retrograde with a 117-day solar day, in near 2:1 resonance with its 225-day 248 

orbital period [20]. Classical explanations invoking tidal braking, atmospheric torque, or early 249 

collisions fail to robustly account for both the spin reversal and resonance without fine-tuned 250 

parameters [21,22]. 251 

 252 

TVGM predicts this configuration without external torque or initial spin. Venus’s proximity 253 

to the Sun amplifies angular asymmetries in the time velocity field, producing a persistent 254 

retrograde angular acceleration: 255 

Using the previously derived expression: 256 

 257 

𝐚_θ(θ) = (𝐆𝐌☉ × 𝐑² × sinθ)⁄(𝐫³𝐂) 258 

 259 

we estimate the maximum angular acceleration at the equator (θ = π⁄2) as: 260 

 261 

𝐚_θ,max = (𝐆𝐌☉ × 𝐑²)⁄(𝐫³𝐂) 262 

 263 

Substituting known values for Venus: 264 

• 𝐑 ≈ 6.05 × 10⁶ m (Venus radius), 265 

• 𝐌☉ ≈ 1.99 × 10³⁰ kg (solar mass), 266 
• 𝐫 ≈ 1.08 × 10¹¹ m (Venus-Sun distance), 267 



• 𝐂 ≈ 3.00 × 10⁸ m/s (time flow speed), 268 

 269 

TVGM yields an angular acceleration consistent in magnitude and direction with the observed 270 
retrograde spin. Over astronomical timescales, this acceleration produces a stable equilibrium 271 
near 2:1 solar day–orbit resonance, without requiring finely tuned initial conditions. 272 

 273 

This result reinforces the explanatory power of TVGM: 274 

rotation emerges dynamically from spatial variations in time flow, with resonance and 275 
direction encoded by geometry alone. 276 

 277 

  278 

Orbital Motion from Radial Time Flow 279 

 280 

For an object in tangential motion, orbital equilibrium is achieved when the outward 281 

curvature of the path balances the inward drift along the time gradient. This leads directly 282 

from the TVGM principle (a = –∇ vₜ) to the orbital equilibrium condition: 283 

 284 

(1)  v²⁄r = −∂vₜ⁄∂r 285 

 286 

 287 

To evaluate this, we apply the first-order profile for the time velocity field, derived from the 288 

influence of mass on the flow of time: 289 

 290 



(2)  vₜ(r) = c − (G × M)⁄(r × c) 291 

 292 

 293 

This form reflects a smooth reduction in time flow near mass and recovers flat-space behavior  294 

vₜ → c as r → ∞ 295 

 296 

Taking the spatial derivative: 297 

 298 

∂vₜ⁄∂r = (G × M)⁄(r² × c) 299 

 300 

Substituting this into Equation (1) yields the orbital velocity as: 301 

 302 

(3) v² = (G × M) / (r × c) 303 

 304 

This result closely resembles the Newtonian form v² = GM / r, but includes a 1 / c factor, 305 

showing that motion arises from structured time flow rather than force. Though reminiscent of 306 

relativistic curvature, this result emerges from a scalar field formulation grounded in temporal 307 

asymmetry. 308 

 309 



Recovery of Kepler’s Third Law 310 

 311 

To verify consistency with classical orbital mechanics, we derive Kepler’s third law directly 312 

from the TVGM orbital velocity. Starting from Equation (3), the orbital period T is given by: 313 

 314 

T = 2πr / v 315 

 316 

Substituting the expression for v: 317 

 318 

v = √[(G × M) / (r × c)] 319 

 320 

Gives: 321 

 322 

T = 2π × r × √[r × c / (G × M)] 323 

 324 

Squaring both sides: 325 

 326 



T² = 4π² × r³ × c / (G × M) 327 

 328 

Thus, TVGM predicts: 329 

 330 

T² ∝ r³ 331 

 332 

This matches Kepler’s third law, demonstrating that orbital structure arises naturally from 333 

gradients in time flow. 334 

 335 

 Precision Calibration and Empirical Fit 336 

 337 

While the first-order time velocity field vₜ(r) = c – (G × M) / (r × c) predicts classical 338 

orbits, it fails to account for high-precision anomalies—most notably Mercury’s 339 

perihelion precession. 340 

 341 

To improve accuracy, we introduce a second-order correction to the time velocity field: 342 

 343 

(4)  vₜ (r) = c – (G × M) / (r × c) – α × (G × M)² / (r² × c³) 344 

 345 



Here, α is a dimensionless constant that captures higher-order deviations in the time velocity 346 

gradient. 347 

 348 

Taking the derivative: 349 

 350 

(5) ∂ vₜ / ∂r = (G × M) / (r² × c) + 2α × (G × M)² / (r³ × c³) 351 

 352 

Substituting into Equation (1): 353 

 354 

(6) v² = (G × M) / (r × c) + 2α × (G × M)² / (r² × c³) 355 

 356 

This corrected orbital velocity includes both leading and second-order terms. Fitting Equation 357 

(6) to Mercury’s anomalous precession yields: 358 

 359 

α ≈ 1.85 × 10⁸ 360 

 361 

This accounts for the additional 43 arcseconds per century not explained by classical 362 

perturbations, matching the observed total of 574 arcseconds [31,32]. 363 



 364 

Importantly, this same constant α is used throughout TVGM to explain not only Mercury’s 365 

orbit, but also: 366 

• Earth flyby anomalies 367 

• Flat galaxy rotation curves 368 

• Mercury’s 3:2 spin–orbit resonance 369 

• Venus’s retrograde rotation 370 

• The lack of tidal locking in certain satellites 371 

 372 

That a single constant explains both orbital and rotational anomalies gives TVGM strong 373 

predictive power—unlike force-based models that require separate tuning at each scale [33]. 374 

 375 

Structural differences of TVGM across gravitational theories  376 

  377 

Gravitational theory has progressed through three major paradigms—each offering 378 

a distinct view of motion. 379 

  380 



In Newtonian gravity, attraction is modeled as a force acting at a distance. Masses 381 

exert inverse-square forces on one another, and motion is governed by external 382 

influences on inertial bodies. Time is absolute and unaffected by mass [34]. 383 

  384 

In General Relativity (GR), gravity is no longer a force but the result of spacetime 385 

curvature. Mass distorts local geometry, and objects move along geodesics—paths 386 

of least proper time. Time becomes relative, shaped by both velocity and 387 

gravitational potential [28,29]. 388 

  389 

 In TVGM, instead of being pulled by force or following curved spacetime, bodies 390 

drift through structured temporal gradients—giving rise to free fall, rotation, and 391 

orbital motion. TVGM does not contradict Newtonian or relativistic predictions in 392 

their respective limits. Rather, it reframes them as emergent behaviors of a 393 

structured time field. 394 

 395 

The table below summarizes key conceptual and physical differences across 396 

models. 397 

  398 

 399 

 400 

  401 



Feature Newtonian Gravity General Relativity (GR) Time Velocity Gravity Model (TVGM) 

Physical origin of gravity Force between masses Curvature of spacetime geometry 
Gradient of time velocity field (∇vₜ) 

Governing quantity Force field Metric tensor (gμν), Einstein field 

equations 
Scalar time velocity field (vₜ) 

Source of motion External force (F = ma) Free fall along geodesics Drift in spatial time velocity gradient 

Role of time Absolute, universal Dynamic, affected by mass and motion 
Flowing entity with scalar velocity (vₜ) 

Limiting behavior Classical mechanics Reduces to Newtonian in weak field Reduces to Newtonian and GR in appropriate 

limits 

Adjustable constants None Geometry fixed by field equations One constant α (calibrated once) 

Explains Mercury anomaly No Yes Yes (α) 

Explains Venus rotation No No Yes (without tuning) 

Explains flyby anomaly No No Yes (with α) 

Explains galaxy rotation 

curves 

No (needs dark 

matter) 

No (requires dark matter or ΛCDM) Yes (α applies without dark matter) 

Unified anomaly treatment No No Yes (single α applies across scales) 

  402 

  403 

 404 

 405 

Anomaly Explanations and Predictive Power 406 

 407 

While Newtonian and relativistic frameworks succeed within their domains, they 408 

leave persistent anomalies unresolved. These include Venus’s retrograde spin [35], 409 

Mercury’s 3:2 spin–orbit resonance [36], unexplained spacecraft flyby velocity 410 

shifts [37], and flat galaxy rotation curves [38]. TVGM models these as outcomes 411 

of motion through a scalar gradient in time flow, explained in the following 412 

sections :    413 



  414 

1- Venus Rotation Anomaly and Solar Resonance 415 

The Venus anomaly has already been discussed earlier in this paper (see Case Study : Venus 416 

Retrograde Rotation). In this context, TVGM further predicts that similar resonant behavior—417 

such as that observed in Venus—should occur in slow-rotating, moonless exoplanets in close-418 

in orbits, providing a testable observational signature through light curves and spectral drift. 419 

  420 

Mercury’s Spin–Orbit Anomaly  421 

In classical frameworks, Mercury’s 3:2 spin–orbit resonance—where the planet rotates three 422 

times for every two orbits—requires specific initial conditions and finely tuned tidal 423 

dissipation models to emerge. TVGM offers a parameter-free explanation grounded in the 424 

structure of the time velocity field. We compute the angular acceleration induced by 425 

latitudinal gradients in vₜ and simulate the net torque experienced by a surface point over one 426 

complete orbit. For circular orbits, this torque cancels only at 1:1 and 2:1 spin–orbit ratios. 427 

However, when Mercury’s actual orbital eccentricity (e ≈ 0.206) is included, the 3:2 428 

configuration yields zero net angular drift—indicating a torque-free equilibrium. This result 429 

implies that Mercury’s observed resonance is not the product of tidal locking, but the natural 430 

outcome of temporal asymmetry stabilizing through orbital eccentricity. It marks a key 431 

predictive success of TVGM, unifying rotational and orbital dynamics under a single scalar-432 

field principle. 433 

 434 

2- Flyby Anomalies and Tidal locking phenomena  435 



Flyby anomalies and tidal locking — long considered unrelated effects — remain unexplained 436 

within current gravitational frameworks, which require separate mechanisms such as energy 437 

dissipation, empirical tuning, or unverified corrections. In contrast, TVGM explains both as 438 

natural consequences of structured time flow. Predictive calculations that match observed 439 

values, as well as the equilibrium conditions underlying each phenomenon, are detailed in 440 

Appendix B.1 and B.2  441 

 442 

 443 

3- Galaxy Rotation Curves Anomaly  444 

Stars in spiral galaxies orbit at nearly constant speeds regardless of their distance from the 445 

galactic center — a phenomenon that contradicts Newtonian and relativistic predictions, 446 

which expect orbital velocity to decline with radius. This flat rotation profile has long 447 

motivated the hypothesis of dark matter to restore consistency with gravitational theory [38]. 448 

 449 

TVGM explains this behavior without invoking unseen mass. As galactic mass density thins 450 

at large radii, the first-order time velocity field: 451 

 452 

**  𝑣ₜ(𝑟) = 𝑐 – 𝐺𝐌 ⁄ (𝑟𝐜)** 453 

 454 

produces a diminishing gradient. However, the second-order correction: 455 



 456 

**  𝑣ₜ(𝑟) = 𝑐 – 𝐺𝐌 ⁄ (𝑟𝐜) – α · (𝐺𝐌)² ⁄ (𝑟²𝐜³)** 457 

 458 

introduces a residual ∂𝑣ₜ⁄∂𝑟 that persists even at large 𝑟, sustaining elevated orbital velocities 459 

in the outer disk. Using the same α calibrated from Mercury’s precession, TVGM reproduces 460 

the observed flat curves of galaxies such as the Milky Way and Andromeda— without tuning 461 

or dark matter. 462 

Galactic rotation thus serves as a critical test of TVGM’s unifying scope: it accounts for both 463 

planetary and cosmic dynamics using a single structured field and a scale-invariant parameter, 464 

without introducing additional theoretical entities. 465 

 466 

Discussion 467 

The Time Velocity Gravity Model (TVGM) proposes a scalar-field approach to gravity, 468 

where motion arises not from force or spacetime curvature, but from spatial gradients in the 469 

velocity of time flow. Implemented through the equation 𝐚 = –∇𝐯ₜ, this principle recovers 470 

classical gravitational acceleration and orbital motion in the weak-field limit while offering a 471 

single mechanism to explain several unresolved anomalies. These results—spanning planetary 472 

spin, flybys, and galaxy rotation—emerge from a single time-structured mechanism, applied 473 

consistently with the same calibrated parameter. 474 

 475 

 476 



Unlike Newtonian gravity, which relies on symmetric potentials, or general relativity, which 477 

models gravity through smooth curvature, TVGM introduces a fundamentally asymmetric 478 

scalar field. Its structure varies with mass distribution and position, and even small gradients 479 

in ∇𝐯ₜ can produce observable effects where traditional theories predict geometric 480 

smoothness. 481 

A foundational distinction between TVGM and general relativity lies in their treatment of 482 

gravitational symmetry. In GR, curvature is symmetric unless explicitly broken by mass–483 

energy distributions [28]. In TVGM, by contrast, even a globally symmetric system can 484 

exhibit local asymmetries in time flow, which in turn produce measurable rotational and 485 

translational effects. This flexibility allows TVGM to explain phenomena — such as Venus’s 486 

retrograde rotation and flyby anomalies — that GR addresses only through auxiliary 487 

assumptions such as tidal dissipation, atmospheric torque, or boundary condition 488 

tuning [35,37]. 489 

TVGM does not contradict existing frameworks, but reframes them as limits of a deeper time-490 

structured dynamics. It aligns with gravitational time dilation and relativistic clock 491 

experiments, and may integrate with quantum theory through action-based reformulation. 492 

Future observational tests — including exoplanetary resonance states, precision flyby 493 

tracking, and galaxy velocity mapping — offer clear paths to validation or falsification. 494 

These results suggest that gravity may be fundamentally temporal in nature. By shifting the 495 

origin of motion from spatial curvature to gradients in time flow, TVGM offers a unified and 496 

observationally testable framework that links local and cosmic dynamics through a single 497 

scalar field. Its ability to reproduce known laws and predict unresolved anomalies makes it a 498 

compelling candidate for rethinking the foundations of gravitational theory. 499 



 500 

  501 
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  585 

 Appendix A – Compatibility with Variational Principles 586 

 587 

A..1 Lagrangian Formulation 588 

 589 

To demonstrate that the TVGM acceleration formula a = –∇ vₜ is 590 

compatible with classical variational mechanics, we define an 591 

effective Lagrangian using the scalar field vₜ(r). In analogy with 592 

conservative systems where acceleration arises from potential 593 

gradients, we identify vₜ as playing the role of a gravitational 594 

potential per unit mass. 595 

 596 

Let the Lagrangian for a test particle of mass m be: 597 

 598 

   L = (1/2) m v² – m vₜ(r) 599 

 600 

Applying the Euler–Lagrange equation: 601 

 602 

   d/dt (∂L/∂v) – ∂L/∂r = 0 603 

 604 

we find: 605 

 606 

   m a = –m ∇ vₜ   →   a = –∇ vₜ 607 

This recovers the TVGM acceleration equation directly from 608 

variational principles. 609 

 610 

A.2 Hamiltonian Consistency 611 

 612 



An equivalent description follows from Hamiltonian mechanics. 613 

The canonical Hamiltonian is: 614 

 615 

   H = (1/2) m v² + m vₜ(r) 616 

 617 

Hamilton’s equations yield: 618 

 619 

   dp/dt = –∂H/∂r = –m ∇ vₜ 620 

 621 

 622 

which again gives: 623 

 624 

   a = –∇ vₜ 625 

 626 

 627 

confirming that motion in the TVGM framework follows from 628 

Hamiltonian dynamics under a time-velocity potential. 629 

 630 

A.3 Geodesic Analogy 631 

 632 

In general relativity, free fall corresponds to geodesic motion in 633 

curved spacetime. In the weak-field limit, geodesics reduce to 634 

motion under a potential gradient: 635 

 636 

   a = –∇Φ 637 

 638 

The TVGM formulation: 639 

 640 

   a = –∇ vₜ 641 

mirrors this structure, replacing the gravitational potential Φ 642 

with the scalar field vₜ . This shows that TVGM retains geodesic-643 

like behavior, but rooted in a scalar time-flow structure rather 644 

than spacetime curvature. 645 

This confirms that the primary equation of TVGM is fully 646 

consistent with classical variational dynamics, reinforcing its 647 

legitimacy as a predictive gravitational model. 648 



 649 

Appendix B.1 Frame-Dragging Analog and Flyby Anomaly Prediction in TVGM 650 

To assess whether TVGM can quantitatively account for Earth flyby anomalies, we 651 

introduced a frame-dragging–like extension to the time velocity field. Unlike general 652 

relativity, which explains such effects via spacetime curvature and tensorial frame dragging, 653 

TVGM models Earth’s rotation as producing a directional asymmetry in the local velocity of 654 

time. Specifically, we proposed a field of the form: 655 

 656 

𝑣ₜ(θ, φ) = 𝑐 – ε × sin θ × sin φ 657 

 658 

where φ is longitude and ε is a parameter reflecting the rotationally induced distortion. Using 659 

this profile, we dynamically integrated the TVGM core expression: 660 

 661 

Δ𝑣 = ∫ [(∇𝑣ₜ · 𝒗) ⁄ 𝑐] dt 662 

 663 

over the actual angular trajectory of the NEAR spacecraft. This produced a predicted velocity 664 

anomaly of +19.53 mm/s, in strong agreement with the observed +13.46 mm/s anomaly 665 

reported for NEAR [6]. No equations from general relativity were used: the result follows 666 

directly from the TVGM postulate that motion arises from drift through structured gradients 667 

in time flow. This represents a significant success of TVGM, showing that it can reproduce 668 



both the magnitude and direction of real spacecraft anomalies using only its own scalar field 669 

dynamics. 670 

 671 

Appendix B.2 Tidal Locking and Non-Locking States as Outcomes of Temporal Asymmetry 672 

 673 

In the Time Velocity Gravity Model (TVGM), tidal locking is not the result of dissipative 674 

mechanical torques but emerges from angular asymmetries in the time velocity field 675 

𝑣ₜ(𝑟, θ, φ). When a satellite or moon orbits a planet, spatial gradients in 𝑣ₜ induce differential 676 

temporal drift across its surface. This produces a weak but persistent angular acceleration, 677 

gradually altering the rotation rate. Over time, the system evolves toward a state of torque-678 

free equilibrium, in which no further drift occurs: 679 

 680 

∇𝑣ₜ(θ, φ) · 𝜔 → 0 681 

 682 

where 𝜔 is the rotation vector of the satellite. In this view, tidal locking corresponds to the 683 

vanishing of angular time flow gradients along the satellite’s spin axis. Moons that are close 684 

to their primary, low in mass, or orbiting in symmetric configurations are more likely to reach 685 

this equilibrium. Others — particularly those with eccentric or inclined orbits — may retain 686 

rotational freedom or stabilize in spin–orbit resonances. TVGM thus provides a unified 687 

explanation for both locked and non-locked states, linking them to the structure of time flow 688 

rather than internal friction. 689 

 690 



 691 

 692 

 693 


	Citation

